Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 300: 134460, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35430198

RESUMO

Metal sulfide - semiconductor nanocomposites synthesized with well-defined tin metal, exhibited the wide bandgap, the absorptions are limited to the UV-vis region for reduction of Reactive Blue 160 (RB 160) under solar light irradiation. The prepared samples were characterized using optoelectronic techniques. Conveniently, a wider range of wavelengths and physical properties can be enabled by doping these metal oxide nanoparticles. Whereas the photoreduction of RB 160 is unambiguously associated within charge separation and transmission progression from the excited Sn doped ZnO/CdS. Furthermore, Photocatalytic degradation efficiency for the Sn doped ZnO/CdS composites still reliant on the excitation strength, indicating the several electrons and protons were precise as a result of charge separation and transmission in prepared catalyst. Sn doped ZnO/CdS composites shows 94% Photocatalytic degradation efficiency within 120 min under sunlight irradiation. This photocatalytic nanocomposites may find capable applications in solar cells to power stretchable and also in wearable electronics.


Assuntos
Nanopartículas Metálicas , Nanocompostos , Óxido de Zinco , Catálise , Luz , Luz Solar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...